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Abstract. The history of programming languages can be separated into
four or five generations. Most languages are nowadays at the level of the
third or fourth generation. The fifth generation programme failed mainly
due to the infrastructure that has been available at that time. We are
going to revive this firth generation programming efforts by deployment
of models as a source code for compilation of programs. Currently mod-
els are used as a blueprint or as some inspiration for programmers. At
present, we are able to develop an approach of modelling to program. In
future, we might have models as programs. This programme will then
result in true fifth generation programming.

This Ansatz requires models at a higher quality level. Models at this level
will become executable if they are precise and accurate. This paper sum-
marises and discusses the vision that models will become programs in
future. Models are used for programming as a communication mediator.
Modelling as an art will be an integrative part of program development.
Mastering modelling as technology will result in modelling as program-
ming. In future, models will become itself programs. We present some of
the main issues for research.

Keywords: models for programming, modelling to program, modelling
as programming, models as programs, true fifth generation programming

1 The Vision: Next Generation Programming

Modelling can be considered as the fourth dimension of Computer Science and
Computer Engineering beside structuring, evolution, and collaboration. Models
are widely applied and used in everyday life and are widely deployed in our
area. Typical scenarios are: prescription and system construction, communica-
tion and negotiation, description and conceptualisation, documentation, expla-
nation and discovery for applications, knowledge discovery and experience prop-
agation, and explanation and discovery for systems. Programming is currently
based on intentional development models. Models are often explicitly specified.
Sometimes they are implicit. We concentrate in this chapter on the first sce-
nario, i.e. models as a means for construction. Generation zero of model usage is
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the starting point. The current state-of-the-art can be characterised as a move-
ment from Modelling-for-Programming (M4P) where models are used as yet-
another-development document for programming or throw-away-inspiration for
the coding towards Modelling to Program (M2P) which is essentially a revival
or reactivation or renaissance of modelling as an art. The main activity for M2P
is model-based development. They are useful for developing the program in its
essentials. But there are other ways to code without models.

We may distinguish three generations for this agenda for the system con-
struction scenario after revival, reactivation, and enlivenment of models instead
of only using models beside blueprint and inspiration:

First generation: Modelling to Program (M2P). Models can also be used as
a source code for program generation. The result of such generation process
may be enhanced by program refinement approaches. The model must be
of a higher quality compared to current approaches. It must be as precise
and accurate as appropriate for the programmer’s task without loss of its
explanation power. It must become adaptable to new circumstances. Main-
tenance of programs can be supported by maintenance of models. The first
generation is thus based on model-based development and reasoning.

Second generation: Modelling as Programming (MaP). Modelling becomes
an activity as programming nowadays. Some models can directly be used as
an essential part of sources for programs, esp. executable programs. They
are neatly integratable with other source codes. Modelling languages have
reached a maturity that allows to consider a model at the same level of
precision and accuracy as programs. Models are validated and verified and
as such the basis for program validation and verification. Models will become
adaptable and changeable. Computer Engineering incorporates modelling.

Third generation: Models as a Program (MaaP). Models can be directly used
as a source code for or instead of programs. If a separation of concern ap-
proach is used for model development then the source for programs consists
of amodel suite with well associated sub-models. Compilers will translate the
model or the model suite to executable programs. Maintenance of programs
is handled at the model level. Models can be directly translated as programs,
i.e. programming can be performed almost entirely through modelling. Third
generation modelling is then true fifth generation programming which essen-
tially frees the program developer from writing third or fourth generation
programs. Everybody – also programming laymen and non-programmers –
who can specify models will become a programmer.

The current-state-of-the-art is going to be analysed in the next section. The
following sections discuss then our vision for the second and third generation.
Figure 1 visualises the vision towards models as programs with the current situ-
ation, towards modelling to program and modelling as programming, and finally
models as a program.

The final stage of model-based reasoning for system construction will be the
usage of models as a program. We shall then partially replace programming by
models. The transformation of the model suite to a program (MaaP) will also
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Fig. 1. From current state-of-art to next generation programming as model-based
thinking

be based on a compiler. Programming will be mainly modelling. In this case, we
may consider modelling as true fifth generation programming.

The Storyline of this Vision Paper

This paper presents the vision for first, second and third generation modelling
as an outline for a series of workshops. Visions are visions. We thus need to
sketch the path towards a new way of programming that is called true fifth
generation programming (5PL) in Section 5. This paper aims at introducing the
entire M2P, MaP, and MaaP programme. We abstain from long citation lists in
the next sections. Subsection 3.2 summarises the large body of knowledge that
is already available.

The current Ansatz in Computer Science is to utilize models as an blueprint
for programming or at least as inspiration. Models can be thrown away after
programs have been developed. The software crisis, the data crisis, and the in-
frastructure crises show that the model for programming approach must be re-
vised. Section 2 discusses well-known approaches to model-based development,
its issues, and its problems. Typical specific approaches are model-driven de-
velopment, conceptual-model programming, model-driven web engineering, and
models@runtime. We realise that model-based development is still often essen-
tially model-backed development. For this reason, Section 3 revisits the current
state-of-art. The body of knowledge already supports to step towards modelling
to programming. There are tools available. These tools may be combined with
heritage programming. Since a model typically focuses on some aspects on cer-
tain abstraction level, we have to use a collection of well-associated models, i.e.
a model suite. Model suite also enable in layered model-based development.

Section 4 discusses features, approaches, and ideas for modelling to program
and furthermore for modelling as programming. These modelling approaches can
be supported by literate modelling that uses model suites. Section 5 discusses
then some of the deliverables we envision for true fifth generation programming.
We might use layering for generation of programs based on a suite of normal
models and a landscape initialisation based on corresponding deep models. This
approach will be discussed mainly on the experience we have learned with the
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separation into initialisation and specification. This approach is a typical onion
Ansatz that has already been used for LaTeX. We thus generalise this onion
Ansatz and discuss its potential. We use two case studies from [50, 65, 74, 99].
for the discussion. A summary is sketched in the final Section 6.

2 Current Approaches to Model-Based Development

Models are used as instruments in many reasoning and especially engineering
scenarios. The reasoning and development process is then model-determined.
Depending on the function that a model plays in a programmer’s scenario we
distinguish three general roles for models: (1) models are instruments for reason-
ing which implies their prior construction and the reasoning necessary for their
construction; (2) models as targets of reasoning; (3) models as a unique subject
of reasoning and its preliminary. These roles have to be supported by sophis-
ticated reasoning mechanisms such as logical calculi. Modelling uses beside the
classical deductive reasoning also other reasoning approaches such as Program-
ming and reasoning must be supported by a mechanism, e.g. logical calculi with
abduction or induction.

2.1 M4P: Models for Programming

Model-based reasoning is an essential feature of all mental models such as per-
ception models which are representing some (augmented) reality and domain-
situation models which are representing a commonly agreed understanding of
a community of practice. Model-based reasoning supports modelling based on
data similar to inverse modelling. It comprehends the background of each model
considered. It allows to consider the corresponding limitations and the obstinacy
of models, esp. modelling languages. As a reasoning procedure, it is enhanced by
well-formed calculi for reasoning. Model-based reasoning is compatible with all
kinds of development procedures (water, spiral, agile, extreme). It also allows to
handle uncertainties and incompleteness of any kind.

The model-for-programming approach uses models as some kind of blueprint
and as a description mediator between the necessities in the application area
and the program realisation. After programming has

Model-based development and engineering is a specific form of engineering
where the model or model suite is used as a mediator between ideas from the ap-
plication domain and the codification of these ideas within a system environment.
It has been considered for a long time as a greenfield development technique that
starts with requirements acquisition, elicitation, and formulation, that continues
with system specification, and terminates with system coding. Models are used
as mediating instruments that allow to separate the description phase from the
prescription phase. Engineering is, however, nowadays often starting with legacy
systems that must be modernised, extended, tuned, improved, etc. This kind of
brownfield development may be based on models for the legacy systems and on
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macro-models representing migration strategies that guide the system renova-
tion and modernisation. The heritage model (or legacy models) is used as an
origin for a sub-model of the target system.

The four supporting means for model-based engineering are the modelling
know-how, the experience gained in modelling practices, the modelling theory,
and finally the modelling economics. The last two means, however, need a deeper
investigation. Specific forms of model-based reasoning for system construction
are, for instance,

– model-driven architectures and development based on a specific phase-oriented
modelling mould,

– conceptual-model programming oriented on executable conceptual models,
– models@runtime that applicabies models and abstractions to the runtime

environment,
– universal applications based on generic and refinable models and with gen-

erators for derivation of the specific application,
– domain-specific modelling based on domain-specific languages,
– framework-driven modelling (e.g. GERA or MontiCore),
– pattern-based development based on refinable pattern,
– roundtrip engineering supported by tools that maintain the coexistence of

code and model,
– model programming where the model is already the code and lower levels of

code are simply generated and compiled behind the scenes,
– inverse modelling that uses parameter and context instantiation for model

refinement,
– reference modelling that is based on well-developed and adaptable reference

models, and
– model forensics which starts with model detection through analysis of the

code, i.e. the model origin is the code.

These approaches develop models by stepwise refinement of the root or initial
model, by selection and integration of model variations, and by mutation and
recombination of the model. Models are typically model suites.

The mediator function of models is illustrated for ‘greenfield’ system con-
struction in Figure 2. System construction is a specific kind of modelling sce-
nario that integrates description and prescription. It might also be combined
with the conceptualisation scenario. B. Mahr pointed out that origins also come
with their theories. We may add also the deep model behind the origin.

During a relevance stage (or cycle), we first reason about the ways of op-
erating in an application. This step may also include field testing of current
artifacts within the given environment. Next we select, reason about, and revise
those properties Φ(O) that are of relevance for system construction. The next
phase is based on classical requirements engineering. We identify requirements
(or business needs). These requirements become objectives Ψ(M) which must be
satisfied by the model. These objectives are biased by the community of practice
(CoP).
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from [96])
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The modelling stage starts with the objectives as they are understood in the
community of practice. Modellers compile and integrate these objectives in a
model (or model suite). The ‘ways of modelling” is characterised

– by the modelling acts with its specifics,
– the theories and techniques that underpin modelling acts,
– the modellers involved into with their obligations, permissions, and restric-

tions, with their roles and rights, and with their play;
– the aspects that are under consideration for the current modelling acts;
– the objectives that are guiding the way of modelling;
– the resources that bias the modelling act.

The realisation stage uses prescription properties as a guideline for construction
the system. Model-based engineering is oriented on automatic compilation of the
entire system or at least of parts of it. If the system is partially constructed and
thus must be extended then the compilation must provide hooks in the compiled
code. These hooks allow to extend the system without revising the rest of the
compiled code.
Validation compares the properties of origins Φ(O) with the properties of the
model Φ(M). Verification compares the properties of model Φ(M) with the prop-
erties of the system Φ(S). Model assessment compares the model objectives
Ψ(M) with the properties of the model Φ(M). System assessment compares the
system objectives Ψ(S) with the properties of the system Φ(S).

2.2 Model-Driven Development

In general, model-driven development is nothing else than a very specific form
of the model development and usage process. We use only the last three in a
specific form. The first two levels are assumed to be given.

Essentially, model-driven development (MDD) does not start with a com-
putation-independent model. The process starts with modelling initialisation.
The CIM is already based on a number of domain-situation models and some in-
sight into the application situation or a model of the application situation. These
models are the origins of the models under development and are then consoli-
dated or toughened. The CIM describes the system environment, the business
context, and the business requirements in a form that is used by the practitioners
in the application domain. This model becomes refined to the PIM by services,
interfaces, supporting means, and components that the system must provide to
the business, independent of the platform selected for the system realisation. The
chosen platform forms the infrastructure for the system realisation. The PIM is
then refined to a platform-specific model PSM. In general, a number of models
are developed, i.e. a model suite as shown in Figure 3.

The main concept behind this approach is the independence of the models
on the platform respectively on the algorithmics setting. This independence al-
lows to separate the phases. A system is then specified independently of the
software execution platform and independently of the chosen set of algorithms.
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The transformation is typically a two directional. Model-driven architectures are
based on three tenets: direct and proper representation of concepts and terminol-
ogy in the application domain, automation for generation of routine components
instead of human interaction, and open standards promoting reuse and proper
tool deployment.

Model driven development assumes that the models at each phase can be
transformed to each other. This rigid requirement cannot be used in many con-
struction scenarios. For instance, database model development is based on for-
getful mappings. The conceptual model contains conceptual information that
is irrelevant for the “logical” or “physical” models and thus neglected during
development.

2.3 Conceptual-Model Programming

Conceptual-model programming uses a compiler approach to programming. The
model will be the source code for the compiler or transformer. The result of
compilation should be then code which might be used for another compilation.
The compiler assures that the model might already be used as (the final) code.
The execution of the code corresponds to the conceptual specification.

Advanced conceptual-model programming is based on three theses:

– Conceptual-modelling languages must provide compiler facilities that allows
to directly execute models.

– Conceptual-modelling languages must support co-design of database struc-
ture, of user interfaces, and of database access and user interaction.

– “The model-compiled code is beyond the purview of conceptual-model pro-
gramming programmers — both for initially creating the application system
being developed and for enhancing or evolving the application system.” [31].

As a consequence, application-system development becomes entirely model-driven.
Conceptual-model programming constitutes model-complete software develop-
ment.

This approach requires that models are of high quality.

– Models are complete and holistic. The conceptual model supports all nec-
essary co-design elements such as structuring, behaviour, and user support.
The model itself can be a model suite.

– Models are conceptual but precise. All model elements must be precisely de-
fined through proper element definition. At the same time, these elements
have to be properly associated to the concept space that is used for concep-
tualisation of the model. Parsimony and economy of model elements guide
the notation.

Provided that the model has high quality then evolution of an application can
be directly represented through evolution of the model. It, thus, asserts that
conceptual-model programming is essentially programming. The model is the
kernel of code that can be easily adapted to the specific platform requirements.
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2.4 Model-Driven Web Engineering

Model-driven development and engineering can be based on generic models.
These models ease the selection of the normal model in dependence on a com-
putation-independent model suite. They are also early serving as an additional
entry at the modelling initialisation phase (Figure 3) and at the landscape (Fig-
ure 4) determination. The problem space, focus, scope, and codified concepts
will be set through the utilisation of such generic models. Additionally, generic
models will be used at the extrinsic (source) reflection layer (Figure 4). Generic
models and reference models can be refined by the data and other information
on hand.

Website development and web information system development is a typical
example of model-based reasoning on the basis of generic models and of refinable
specifications. Website construction benefits from the usage of previous models
and programs, esp. generic ones. These generic models compile experience gained
in similar web engineering projects. This experience elicitation, evaluation, ap-
preciation, and acquisition is a specific rigor stage (or cycle). Generic models
stem from models that have been already used. The generalisation procedure
that led to the generic model allows to derive the specific refinement mecha-
nisms for mapping the generic model to the old specific one. Generic models
come then with a refinable specification and with a refinement calculus.

Model-based reasoning and website model-based development is based on
the specification language SiteLang (see below). Website development is page-
oriented where pages are essentially media objects with their structuring, their
functionality (especially navigation, import/export, search), their runtime adap-
tation features to actors or users, their databases support, and their specific
navigation-oriented flow of work. Websites can be categorised, e.g. business web-
sites for a business with customer collaboration according to the used business
culture. This categorisation is the basis for generic model suites of the web-
site. The normal model can be then derived from the generic model and the
computation-independent model.

2.5 Models@Runtime

Most model-driven development and most-driven architecture are concerned
with the development process. Models@Runtime take a different turn towards
support of software after it has been installed. Beside model-based evolution
support, models are additionally developed on top of the code. The code will
then be the origin. The model suite reflects essential properties of a system. This
approach aims at development of proper performance models that characterise
the software and its behaviour.

The Model@Runtime approach extends the applicability of models and ab-
stractions to the runtime environment. This approach provides means for han-
dling complexity of software and its evolution if effective technologies exist for
code analysis and change in a given environment. Models are used for reasoning
about runtime behaviour, for appropriate adaptation of systems at runtime, and
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for capturing runtime phenomena in systems such as time, memory, energy, loca-
tion, platform, and personalisation concerns. Models provide meta-information,
for instance, in order to automate runtime decision-making, safe adaptation of
runtime behaviour, and optimal evolution or modernisation of systems. Modern
systems are increasingly complex. This complexity is a challenge that needs to
be managed especially in the case of evolving hybrid infrastructures consisting
of a manifold of heterogeneous services, resources, and devices.

Typical tasks are the following ones: (a) creating or updating the mod-
els suite that represents a system according to evolution of the system or to
changes in system’s environments; (b) developing appropriate adaptation strate-
gies; analysing and maintaining model suites while parts of the corresponding
systems are changing; (c) propagating changes in the model suite back to the
system; (d) adaption of emerging systems and their model suites in ways that
cannot be anticipated at model development and system programming time;
(e) enabling features supporting continuous design, deployment, and quality of
service analysis for performance optimisation; (f) optimisation and tuning; (g)
reducing uncertainty that arise due to environment changes, due to system in-
tegration and migration, due to changes of quality concerns, and due to changes
and extensions of the system user communities and evolving viewpoints.

We envision that the modelling-as-programming approach allows to solve
some of these challenges. Models@Runtime are an example of model-based rea-
soning despite the classical system construction scenario. Models are used for
exploration, for exploration, for discovery of obstacles, for observation, and im-
provement of current solution, i.e. the scenarios targeted on system modernisa-
tion beside model-based development. It integrates also model checking.

2.6 Lessons Learned with Model-Based Development

Model-driven development highly depends on the quality of models. Although
model-driven development will be supported by compilers in the future, it is
currently mainly using an interpreter approach. Models must be doubly well-
formed according to well-formedness criteria for the model itself and well-formed
for proper transformation in the interpreter approach. For instance, database
schemata have to be normalised. BPMN diagrams must be well-formed in order
to be uniquely interpretable. Otherwise, the interpreter approach will not result
in models that have a unique meaning. Model-based development has at least
four different but interleaved facets: (i) model-driven development with stepwise
adaptation of the model (suite), (ii) model-driven programming as conceptual-
model programming, (iii) model-based development with generic or reference
models as the starting point, and (v) model-based assessment and improvement
of programs. The interpreter approach can be sufficient in the case of high-quality
models. The classical approach to database modelling that uses a normalisation
after translation, however, shows that compiler approaches are better fitted to
model-based reasoning and development and to Modelling as Programming. If a
model suite is going to be used as the basis for model-based development then
the models in the model suite must be tightly associated. Tracers and controllers
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for associations among sub-models and coherence within a model suite are an
essential prerequisite for proper model-based development. Often model suites
are only loosely coupled. A compiler has to support sophisticated integration and
harmonisation in the last compiler phase what is also a theoretical challenge.

3 Revisiting The State-Of-Art

3.1 Currently: Model-Backed Development

Model-based development, model-based design, and model-based architecture
use a world of models. So far, we did not reach the stage that models are used
for generation of programs. Programming is rather based on blueprint models
or inspiration models. These models will not be changed whenever the program
is under change. They are then throwaway origins in the programming process.
Development is therefore model-backed. The potential for model-based develop-
ment is, however, obvious. Software engineering is now paying far more attention
to the needs, cultures, habits, and activities of business users. Users have their
own understanding of the application that must be harmonised with the percep-
tion of developers.

Model-based development is currently revitalised [1], e.g. in the MontiCore
project (see, for instance, [44]). The revival led to a new stage in generative
software engineering for domain-specific languages which reflect the worlds of
business users. In general however, modelling is still not considered to be a
mandatory activity for programmers. It is still considered to be some kind of
luxury.

We further observe that model-backed development has already been ap-
plied directly with the beginning of programming. Programmers have had their
models. These models have, however, been implicit and have been stated rather
seldom. Changes in the software did not use the models behind. They rather led
to additional hidden models. These implicit models became hidden legacy since
documentation of software has been and is still a big issue and is often completely
neglected. The explicit model-backed development became important with the
advent of the internet software and the turn towards user-oriented software.

3.2 The Body of Knowledge

Our approach to model-based reasoning is based on [20, 69, 77]. Figure 2 fol-
lows the reconsideration in [96] of the work by B. Mahr [70] Other variants of
model-based development are conceptual-model programming and model driven
architectures [31, 81], universal applications with generators for derivation of
the specific application [78], pattern-based [6], and many other project like the
CodeToGo project. SPICE and CMM added to this approach quality issues and
matured co-design methodology [10, 36, 48, 86, 95]. Model-driven development,
engineering and architecture (MDD, MDE, MDA) taught some valuable lessons
reported about model-driven approaches, e.g. [27, 37] and the list in [108]. Model-
driven development can be extended by literate programming [60], database
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programming [88], programming with GibHub [52], ’holon’ programming [29],
refinement [13], multi-language approaches [33], and schemata of cognitive se-
mantics [66]. Projects like the Axiom project [25], the mathematical problem
solver [83], and RADD (Rapid application and database development) [7, 92, 94]
show how MaP can be accomplished.

An essential method for model-based programming is based on refinement
styles. A typical refinement style is practised in the abstract state machine ap-
proach [15, 12]. A program is specified in a rather abstract block-oriented form
based on changeable functions. These function can be refined to more detailed
ones without context dependence to already specified ones.

Our vision approach can also be based on interpreters instead of compilers
or compiler-compilers. Typical examples are [24, 23] using MetaCASE [55, 54],
Come-In-And-Play-Out [43] based on algorithmics [19, 42], and model-driven
web engineering approaches (beside [87], for instance, Hera [45], HDM [39], MI-
DAS [107], Netsilon [76], OOHDM [89], OOWS [80] RMM [47], UWE [61], WAE2
[21], Webile [85] WebML [18], WebSA [73], W2000 [8], and WSDM [104]). The
interpreter approach is useful in the case of relatively simple modelling languages.

The interpreter approach to partially (and fragmentary) program generation
can be applied as long as languages are strictly layered and there is no depen-
dence among the layers. Optimisation is not considered. First interpreter ap-
proach to database structuring followed this approach for the entity-relationship
model (based on rigid normalisation of the source schema before interpreting
with attribute, entity, relationship layers whereas the last one allows very sim-
ple cardinality constraints). Constraint enforcement is a difficult problem which
requires compilation, denormalisation, and specific supporting means.

The compiler approach [82, 110] allows to generate proper programs. The
rule-based approach to database schema transformation in [63] extends [32]. It
uses the theories of extended entity-relation modelling languages [94] and the
insight into techniques such as web information systems [87] and BPMN seman-
tification [14, 16]. We use advanced programming techniques and theories like at-
tribute grammars [26], graph grammars [30, 94], database programming through
VisualSQL [49], performance improvement [102], and normalisation techniques
like those for storyboards in [74].

The fifth generation computer project [2, 3, 34, 75, 106, 105] inspired our ap-
proach to modelling as programming. We base our changes on advices by H. Aiso
[4] who chaired the architecture sub-committee in the Japanese fifth generation
computer project.

3.3 Experience Propagation Through Reference Models

Computer Engineering developed a rich body of successful applications that
form a body of experience. This experience can also be used in a completely
different development style instead of ‘greenfield’ or ‘brownfield’ development.
Already by investigating so-called ‘legacy’ systems, we have had to realise that
solutions incorporate tacit knowledge of programmers. We should therefore call
these older solutions better heritage since they allow us to inherit the skills of
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generations of programmers despite changing hardware and software. Heritage
systems provide a rich body of already available solutions.

A typical direction of heritage system development are reference models.
Reference models [9, 35, 71, 101, 91] are generalisations of existing successful sys-
tem solutions. The experience gained in such applications can be generalised
to classes of similar solutions. The generalisation procedure allow to invert to
generalisation to a specialisation to the given solution. Universal programming
[78] and generic solutions [103] use generation facilities for deriving an essential
part of a solution from already existing more general ones.

3.4 Tools for Model-Based Development

The fundamental idea behind MetaCASE and its incorporation to a sophisticated
tool support for modelling [23] is the separation of models from their visual
representations. MetaCASE is a layered database architecture consisting of four
OMG layers: signature, language, model and data.

The computational environment for the approach can be based on systems
ADOxx, Eclipse, Eugenia, GMF, Kieler, mathematical problem solvers, Monti-
Core, and PtolemyII [53, 28, 44, 56, 62, 83, 84]. The two case studies mentioned
below have been discussed in [50, 65, 74, 99]. More examples on models in science
are discussed in [98].

The compiler-compiler approaches [17, 41, 46, 68] are far more powerful. They
have been developed for domain-specific languages (at that time called ‘Fach-
sprachen’) since 1973. This approach is our main background for modelling as
programming. It can be combined for ‘brownfield’ development (migration, mod-
ernisation) with the strategies in [58]. The directive and pragma approaches
have been developed already for FORTRAN and have been extensively used
for C, C++, and especially ADA [93]. The layered approach used in this chap-
ter follows the realisations already known and widely applied for programming
languages since COBOL and ALGOL60. Layering is also the guiding paradigm
behind LaTeX and TeX [59, 67] with a general setup layer, the content layer,
the adaptable device-independent layer, and the delivery layer. The compiler-
compiler approach additionally integrates generic models [11, 87, 100, 103], ref-
erence libraries [35, 101], meta-data management [64], informative models [97],
model-centric architectures [72], and multi-level modelling [38].

3.5 The Background: Model Suites

Modelling should follow the principle of parsimony : Keep the model as simple
and as context-independent as possible.

Models that follow this principle provide best surveyability and understand-
ability. Context-dependence would otherwise require to consider all other models
and origins together with the model. The result would be a model that is not
really ready for use.
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Another principle is the separation of concern: Instead of considering a holis-
tic model which allows to consider all aspects and functions, we use a number
of models that concentrate on few aspects and support few functions.

This second principle requires consideration according to aspects such as
structure, functionality, behaviour, collaboration as the triple (communication,
cooperation, coordination), interactivity, infrastructure, storage, and computa-
tion. The classical co-design approach to database system development follows
this principle by integrated consideration of database structure models, func-
tionality and behaviour models, viewpoint models, and realisation models. The
principle can also be based on the W*H separation [24], i.e who (relating to
user profile, habits, personal culture), where (wherein, wherefrom, which orien-
tation), what (whereof, wherefore, wherewith), why (whence, whither, for what,
whereto), in what way (how, by what means, worthiness, which pattern, on which
basis), when (at what moment and time frame), whom (by whom, whichever),
and whereby (which enabling system, infrastructure, languages with their own
obstinacy and restrictions ...). Separation of concern enables to consider from
one side inner and implicit models as deep models and from the other side outer
and explicit models as normal models. Deep models are typically stable and will
not change. Normal models are more tightly associated with the origins that are
really under consideration.

Following the two principles, we use a collection of models. The entire picture
is then derived from these models similar to the global-as-view approach [111].
These models do not need to be entirely integrated. It is only required that
the models in the collection are coherent. Utilisation of several models requires
support for co-existence, consistency among abstractions, and integration of deep
and normal models. Models in such collections or ensembles are also partially
governing other models, i.e. we can use a synergetic separation into master and
slave models. This separation provides a means to use control models for master
models. We do need control models for slave models.

Coherence becomes then a main property of such model collection. This
coherence must be maintained. The simplest way for support of coherence is
to build explicit associations among these models. Associations can be build on
general association schemata. In this case we can develop tracers and controllers
for the model association. The association represents then the architecture of
the model collection. Associations among models may also based on association
among sub-models or on substitutability of a submodel by another submodel or
on composers of models.

A model suite is a coherent collection of models with an explicit association
schema among the models, tracers for detection of deviations from coherence,
and controllers for maintenance of the association.

3.6 The Trick: Layered Model Development

The model suite in Figure 4 will be layered into models for initialisation and
landscaping, for strategic intrinsic set-up, for tactic extrinsic reflection and def-
inition, for customisation and operationalising including adaptation, and for
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model delivery. Figure 4 displays layering for greenfield development. Brown-
field development is based on revision for modernisation, integration, evolution,
and migration. It uses also reengineering of models that become additional ori-
gins with their normal models, deep models, mentalistic and codified concepts.
Heritage development does not follow layering in this way.
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Fig. 4. The layered approach to model suite development and program generation
(revised and modified from [50])

We use the W*H characterisation for landscaping as initialisation of a lay-
ered model suite. Figure 4 separates from one side supporters such as sources,
grounding and basis on the left side and from the other side enablers such as
methodology, theories, techniques on the right side.

4 Model-Based Thinking

Model-based thinking is going to integrate modelling into programming. Models
can be used for ‘semantification’ of programs. Model-based thinking is differ-
ent from programming since it uses models of humans together with models
of the computing infrastructure. These models can be oriented on the way of
programming, controlling, and supporting infrastructure. The way of modelling
allows to concurrently consider several variants and alternatives for a solution,
to use preference assessment for ‘good’ solutions, and to separate concerns by
well-associated with each other models.

Models are used in everyday life as mental prospect or idea. In this case
they are less precise than those used in system construction scenarios. Program
development needs a higher level of accuracy and precision. We concentrate here
on high-quality models, i.e.
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· with potential extensibility, adaptability, replaceability, efficiency, stability,
validatable, testable, analysable, exactness, error-proneness, reliable spacial and
temporal behaviour, dependability, maintainable, etc. from one side of external
quality and
· with inner coherence, toleratable redundancy, constructivity, modularisation,
coherence, and efficiency, etc. from the other side of internal quality.

4.1 The Modelling Method for Programming

Let us briefly remember generations of programming languages and derive that
M2P is a natural and obvious continuation of the development of programming
languages. First generation programming was oriented on executable processor-
dependent code. The second generation brought processor independence and
introduced symbolic and mnemotic code. It provided thus some hardware inde-
pendence. Assembling programs were interpreted by an assembler. They have
been oriented on the way of controlling the computation. Both generations al-
lowed a very efficient and effective full treatment of all processes performed at the
computer. At the same time, programming was rather low level machine-oriented
programming and, thus, a challenging task for well-educated specialists.

The third generation languages standardised Von Neumann constructs to
higher level constructs that can be used within a standardised structure of pro-
grams. These constructs are context-reduced and exempted from the plague
of firmware dependence. The languages are oriented on an abstraction of the
way of computing (or working) of computers. Syntax and partially semantics of
languages became standardised and well-defined. Meanwhile, these constructs
are near to human languages. Third generation programming became somehow
independent on the enabling infrastructure. Structuring of programs has been
standardised and component-backed. The main enablers for third generation
languages are compilers, debuggers, linkers, and editors. Compilers incorporated
also optimising programs for generation of efficiently executable code at the level
of second or first generation languages. Programming could be thus performed
by everybody who got computer engineering education.

Fourth generation languages provided implementation and groundware in-
dependence, e.g. data storage and management independence and management
system independence. These languages are macro-based instead of command-
oriented and are often script languages. Optimisation is now available for a bunch
of concurrently executed programs. Groundware independence can nowadays
also provided in networked computation. Third and fourd generation program-
ming can be based on a number of different paradigms such as object-orientation,
parallel computing, functional programming, imperative or procedural program-
ming, symbolic computation, collection-oriented (e.g. set- or bag-oriented) pro-
gramming, event-driven programming, and declarative programming.

Fifth generation languages raised the hope for program development in com-
putational environments that could ‘think’ for themselves and draw their own
inferences using background information. The approach was mainly based on
representing programs as massives of formulas in first-order predicate logics.
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One of the reasons that this program failed is this restriction to first-order pred-
icate logics. Other reasons are: “it was highly dependent on AI technology, it
did not achieve an integration of AI and human-computer interface techniques,
... it tried to provide a universal solution for any kind of programming, it routed
granularity to basic program blocks, and it was oriented on one final solution
instead of coherent reasoning of coherent variants of final solutions depending
on the focus and scope of a user.” [50]

Our vision is to integrate the way of programming and the way of modelling.
Models are typically model suites and allow to concentrate on certain aspects
while not loosing the association among the models in the suite. This approach
decreases the complexity of reasoning to a level that a human can easily capture
it. Since the model suite is integrated, this reduction does not mean to loose the
entire view on a program. Model-based thinking is also based on approximate
reasoning since a model can be an abstraction of another more precise or more
accurate model. Models incorporate their explanations, the necessary knowledge
from the application domain, and the reasoning and thinking approaches of users.
If models and model suites can be transformed to programs then maintenance
of such programs can be transferred back to maintenance odf models.

4.2 The Near Future M2P: The Modelling To Program Initiative

M2P is based on a consolidation of the body of knowledge for models, modelling
activities, and modelling. The renaissance of modelling towards a real art of
modelling allows to use modelling as a matured practice in Computer Science
and Computer Engineering, esp. for system development and software system
development. The previous chapters contributed to this development. M2P can
be understood as a technology for model-based development and model-based
reasoning.

Model-based reasoning and thinking is the fourth dimension of human life be-
side reflection and observation, socialising and interacting, acting and fabricating
(e.g. engineering), and systematising and conceptualising (typical for scientific
disciplines). Programs reflect a very specific way of acting with a machine. Pro-
gramming is so far bound to Von Neumann machines. It will be extended to
other machines as well, e.g. to interaction machines [40, 109]. Model-backed de-
velopment coexists with programming since its beginning, at least at the idea
and comprehension level. Documentation or informative models are developed
after programming. Modelling to program is coordinated modelling within pro-
gram development and design processes. It enhances programming, contributes
to quality of programs and enables in model-oriented and purposive maintenance,
change management, and system modernisation. Model and systems complement
one other using separation of concern and purpose. Non-monolithic programs
and systems use a variety of languages. Their coherence and integration is far
simpler if we use model suites and if programs are also following architecture
principles similar to the associations in the model suite.

M2P requires high-quality models. Models must be precise and accurate.
They must not reflect the entire picture. They can be intentionally incomplete.
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These models may use dummies and hocks for code injection by the translator,
e.g. similar to stereotype and pattern refinement [5]. Models may already contain
directives and adornments as hints for translation. In most cases, we use an
interpreter for transformation. A typical example is the ADOxx+ transformation
for HERM++ interpreters discussed in [63]. In this case, views are represented
by dummies. Late logical code optimisation is necessary after translation. M2P
requires refinement and adaptation of the translated code. Models intrinsically
incorporate deep models. Modelling is then mainly normal model development.
An early variant of this approach is the RADD toolbox for database structure
design and development [94]. Website generation [87] is another typical example
of this approach.

Modelling has now reached the maturity to properly support programming
at the intentional level. It is also going to be used at the meta-reasoning level
[22] for guiding methodologies and methods. Modelling becomes an enabler for
development of large and complex systems. It is already a commonly used tech-
nique for user-oriented and internet-based web information systems [87]. These
systems support a wide variety of user frontend systems according to business
user’s needs. They integrate a number of different backend systems.

Modelling to program does not mean that programs have to be developed
only on the basis of models. Models can be the source or pre-image or archetype
or antetype of a program. Still we also program without an explicit model. M2P
eases programming due to its explanation power, its parsimony, and comprehen-
sibility.

4.3 From Literate Programming to Literate Modelling

Literate programming co-develops a collection of programs with their informative
models [97] that provide an explanation of the programs in a more user-friendly
way. It can be extended by approaches to MaP with proper compilation of source
code on the basis of small programs, program snippets, and a model suite. Pro-
grams and the model suite become interwoven. The first approach to literate
programming has been oriented on programs with derived libraries of user in-
terfaces and informative models [60]. It became far more advanced. Nowadays
programs are interspersed with snippets of models. Most of these models are,
however, documentation models. In this case, models formulate the meaning and
understanding of programs. They connect this documentation to the program
code at a high level and mostly in natural language. Documentation models
integrate the code documentation with the developer idea documentation, the
usage documentation, and the interface documentation. Literate programming
thus overcomes the habit that the documentation is going to live in the program
itself. The program is going to live in the documentation model. In a similar
way, interface and informative models can be handled.

Literate programming can be based on models for the central program and
models for interfacing and documenting. Since the central program is the govern-
ing program, literate modelling will essentially be a global-as-design approach for
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a model suite. Different users might use different models for the same application
case.

Literate modelling is essentially modelling with integrated vertical and hor-
izontal model suites. Horizontal model suites consist of models at the same ab-
straction level. A typical horizontal model suite in the global-as-design approach
is the conceptual database structure model together with the view(point) exter-
nal models for business users. Vertical model suites integrate models at various
abstraction and stratification levels. Software development is often based on
some kind of waterfall methodology. Models at a high level of abstraction are,
for instance, storyboard and life case models. They are refined to models repre-
senting data, events, processes, infrastructure, and support systems. Modelling
the OSI communication layer structure results in a typical vertical model suite.

Literate modelling incorporates a variety of models such as representation
and informative models in a natural language into program development. It
provides a high level abstraction and is thus program-language independent. The
meaning of programs is provided prior to coding. Many-model thinking [79] can
be developed towards model suite thinking. There are high-level introductory
models such as informative models. These models are refined to models that
reflect certain aspects of an application and to models that serve as origins for
implementation models.

4.4 MaP: Towards Second Generation – Modelling as Programming

A central challenge of (conceptual) modelling is to facilitate the long-time dream
of being able to develop (information) systems strictly by (conceptual) modeling.
The approach should not only support abstract modelling of complex systems
but also allow to formalize abstract specifications in ways that let developers
complete programming tasks within the (conceptual) model itself. It thus gen-
eralises the model-driven and modelling to program approaches and develops a
general approach to modelling as high-level programming.

Modelling is an activity guided by a number of postulates, paradigms, princi-
ples, and modelling styles. Already nowadays, we use paradigms such as global-
as-design and principles such as meta-modelling based on generic and reference
models. MaP is however dependent on deep models and the matrix. Next gener-
ation programming will also allow to be flexible in the postulates and paradigms.

Modelling can be organised in a similar way as structured programming, i.e.
following a well-developed methodology and framework within an infrastructure
of supporting tools. Models may be based on refinement approaches such as
pattern-oriented development [5]. They contain enactor hocks for integration of
source code.

Similar to system programming, modelling will be based on literate pro-
gramming and literate modelling. For MaP, literate modelling becomes essen-
tial. Modelling as programming is oriented on development of complex systems.
model suites Model suites can be developed on the basis of different frameworks
as mentioned above,

A number of tools are going to support MaP:
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– Sophisticated editors and frameworks have to be developed for this approach
as extension and generalisation of existing ones, e.g. ADOxx, Kieler, Monti-
Core, and Ptolemy II.

– Code generation for the general MaP programme is still a matter of future
development. There are already parts and pieces that can be used for gener-
ation and compilation: the RADD workbench realisation (Rapid Application
and Database Design) [94], database programming by VisualSQL tool [49],
performance management and tuning tuning (e.g. [90, 102]), advance high-
level workflow specification [14], integrated web information systems design,
and co-design.

– The implementation approach to MaP may be inspired by three solutions
that are already common for programming languages:

• Transformation and compilation is based on standardised combinable
components. These components can also be reflected by specific models
within a model suite.

• Each specialisation can be enhanced by directives for compilation and by
pragmas for pre-elaboration, convention setting, and exception handling
like those in C++ and ADA. Model directives configure and pre-prepare
a model for compilation. Models can be enhanced by default directives
or by adornments detailing the interpretation of model elements. Prag-
mas are used to convey “pragmatic information” for compiler controllers,
adapters, context enhancers. There are language-defined pragmas that
give instructions for optimization, listing control, storage, import of
routines from other environments, extenders for integration into sys-
tems, etc. An implementation may support additional (implementation-
defined) pragmas.

• MaP aims at programming-language independence. In this case, it has
to be supported by multi-language compilers or compiler-compiler tech-
nology. For instance, database model suites are going to be mapped in
a coherent and integrated form to object-relational, network, hypertext,
etc. platforms. The association among various structuring of data struc-
ture is governed by the association schema of the model suite.

MaP requires a proper education for modellers. They have to master modelling,
system thinking, programming techniques, reflection of models in various ways,
communication with the application experts, and design of model suites. MaP
knowledge and skills will become a central module in Computer Science similar
to algorithmic thinking and programming. Model suites will become the medi-
ating device between applications and their needs from one side and the system
realisation from the other side. Already programming can be understood as an
experimental science and as empirical theories by means of a computing device.
Modelling continues this line. MaP thus needs a proper development of a the-
ory and technology of modelling. Continuous model quality management will
become a challenging issue.
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5 Towards True Fifth Generation Programming

True fifth generation programming will be based on models which are considered
to be programs due to generation of program codes from the models without
programming at the level of 4PL or 3PL. Compilers or compiler-compilers are
transforming the model suite directly to 3PL or 4PL code that can be compiled
in the classical approach. A high-quality model suite can be used as a program
of true fifth generation and will be mapped to programs in host languages of
fourth or third generation.

A new generation of programming languages has to support a large variety of
application areas since computers became an essential element of modern infras-
tructures and proper program support is necessary for all these areas, disciplines
and daily life. We might try to develop a very large number of domain-specific
languages. In this case, domain experts in a singleton domain are supported
within their thought pattern. However, application are rather cross-domain ap-
plications with a wide variety of cultures, habits, and approaches. The literate
modelling approach seems to be an alternative. In this case, model suites will
thus become high-level programs and thus be the basis for true fifth generation
programming in true fifth generation programming (5PL).

One potentially applicable realisation strategy is based on a layered approach
discussed below similar to successful approaches such as LaTeX. We shall use
this strategy in onion meta-model specification approach.

MaaP should also by partially independent on programmer’s postulates,
paradigms, and principles. It should also be tolerant and robust against changes
in the 3PL and 4PL thus providing a programming language independence. At
the same time, MaaP needs to be robust against a deviations from the nor-
mal application situation. We currently observe that application development is
based on some kind of ‘normal operating’ in the application without taking into
consideration potential but tolerable deviations from the normal case. At the
same time, it must be supported by a specific MaaP education.

5.1 Ideas for 5PL on the Basis of MaaP

Models are often developed as normal models that inherit implicit deep models
together with corresponding methodologies, techniques, and methods, i.e. its
matrices. Normal models directly reflect origins according to the focus used for
shaping the scope and non-scope of the model, functions that the model play
in application scenarios, and analogy to be used for representing the origins.
Justification and the quality sufficiency characteristics are often injected by deep
models. Moreover, complex applications remain to be complex also in the case
that a model suite is going to be used.

Modern applications are also interdisciplinary and are develop by many
professionals which follow very different postulates, paradigms, and principles.
They are not entirely harmonisable. They co-exist however in daily life. This
co-existence can be expressed on the level of models but not on the level of
programming languages.
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Model suites will bond the applications, the domain and the computer sup-
port. They will become mediators between the application and the supporting
infrastructure. Models are at the same time a means, an intermediary, and the
medium for expressing separatable aspects of an application. Model suite will
play the role of a “middle-range theory”.

A model suite comes with its architecture and meta-model of the model
suite. We may also use steering and governing models within a model suite.
Some models in a model suite can be considered to be guiding ones since they
are refined to more specific ones. A model suite can incorporate also quality-
supporting meta-models (called checksum models) in order to provide means for
quality control and for coherence support. Model suites incorporate also user-
oriented interfacing models. We expect that these models will be developed as
external and informative models for issues important for different users. In this
case, models can be narrative as long as the association schema supports that.
Synergetics approaches allow to develop master and slave models. Master models
can be configured and adapted by control models. In this case, we need to build
sophisticated editors for model suites.

The editors should be based on the same principles as the compilers for
program generation from a given model suite. In the next subsection, we consider
the onion meta-model for model suite composition. Editors should also include
supporting means for check, control, and debugging.

Separation of concern can be based on application profiles [57]

normal model suites for the given application case

libraries of injectable deep model suites for landscaping and intrinsic strategic
consideration steps

generic models and heritage model suites

from 3/4PL to 5PL by model suites representing thinking and reasoning

The MaaP approach will thus result in a complete model suite that becomes
the source for the code of the problem solution, and for the system to be built.
Figure 4

The delivered model (suite) is then going to be compiled to a program. The
compiler has to transform the model to platform-dependent and directly exe-
cutable programs after an optimisation phase. The compiler will typically be a
4-pass compiler (lexical analysis, semantical analysis, transformation and opti-
misation of intermediate code, target coding).

laymen programming

Von Neumann and Turing style of programming is only the beginning of a
new era of development of computerised support mechanisms. This programming
style does neither entirely reflect how humans reason and work nor represent
the way how cultures, organisations, and societies act and evolve. We often map
some kind of understanding to a program system and expect that the world
outside computation is going to behave this way. Very soon after installation of
such system it is going to be changed. Paradigms like programming-in-the-small
and programming-in-the large can not be easily extended to programming-in-
the-society or programming-in-the-world. The software and the data crises are
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essentially a result of the endeavour to ortho-normalise and to conquer the world
by means of computer systems.

The simplest approach to change this situation is Models as a Program that
reflects human way of working and thinking as well as the understanding of a
society.

5.2 One Potential Solution: The Onion Meta-Model Specification
Approach

MaaP can be based on a stereotyped model suite specification. This specifica-
tion may follow the style of LaTeX document specification onion in Figure 5.
One typical solution (however only one of many) for system and also model
suite development is vertical layering: (1) specify the surface and foundation;
(2) provide an understanding of mechanisms of functions, processes, and oper-
ations; (3) develop means that the system functions; (4) develop the basis for
functioning; (5) develop variants for a solution within a variation spreadsheet
with adaptation facilities. This approach supports development and application
of well-structured and composable models suites which are governed by the kind
of model.

beginModelClass [identify, define]

endModelClass

useModelDefs [discipline]
useModellingStyle [mould]

supportOriginPackage [situation]
supportModelFoundation [theory]

beginModelContent [data, tracks,
events]

enablerModelling [technology, tools]

...........................

endModelContent

Fig. 5. The onion approach to model suite specification (modified from [99])

Model class: Models are used as instruments and thus depend on the scenario
in which the function. Different kinds of models can be stereotyped. This
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stereotypical categorisation can be used for the definition of the model class.
The model class becomes the outer shell of the model specification onion.
Model classes are based on the internal shell for model formating and general
initialisation.

Model style and pattern: Depending on the model class, we may incorpo-
rate various libraries and methodological moulds at the model-style-and-
discipline shell of the onion.

Model generics and foundations: Models consist of an internal deep model
and of a normal model. The deep model is typically not completely revised.
Its essential element is the model background. The grounding is accepted
without any revision. The basis can be slightly extended and modified. The
background forms the model foundation. The model foundation will be sup-
ported by a model package for representation of the specifics of the model
situation. Additionally, generic models may be used as a basis for the normal
model. These models may be collected in a library of generic models.

Model embedding and tools: The fourth shell is the support shell. Compil-
ers are tools as well as a specification workbench. Technology support is a
matter of convenience. A specific support is given for the combination of the
given deep model with the normal model.

Normal model specification: The main part that is represents the specifics
of the given set of origins is the normal model.

The specification setting follows the LaTeX compilation approach. The gener-
ation of the target model suite and the programs will result in a number of
auxiliary elements similar to symbol tables for compilers of the first generation.
The intermediate result of the transformation is a realisation-independent and
infrastructure-independent model suite. The final result is then a realisation-
dependent and infrastructure-dependent model suite or a program that may be
executed in the given environment.

Pragmas and model directives are essential elements that we use for enhance-
ment of conceptual models for system realisation. Pragmas can be considered as
a language feature that allows adjusting or fine-tuning the behavior of a program
compiled from a model. Model directives might also be used as additional control
units for compilation. An essential element of a compiler is the precompilation
based on a prefetching strategy of compiler-compilers.

Model correction is an essential element of prefetching. Already in the case
of consistency maintenance for integrity constraints, we realised that models for
translation must be correct. Schema-wide correctness is often neglected since
most integrity constraints are declared at the local level. Cardinality constraints
are a typical example which global correctness is partially based on local and
type-based correctness. Since databases have to be finite and schemata are con-
nected then we may derive implications for a given set of integrity constraints.
We have to validate whether these implications are correct. Moreover, a set of
cardinality constraints may be fulfilled only in infinite databases or in empty
databases. Models must have a sufficient quality that is evaluated on the basis
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of corresponding evaluation procedures. If a model or a model suite is not correct
then we have to improve the quality of a model before translation.

This approach is already currently realisable. Let us consider in brief two
case studies [50, 65, 74, 99]:

MaaP for Database System Design and Development

Database structure modelling often uses extended entity-relationship models
such as HERM [94]. HERM can also be extended to HERM+ with a specific
algebra for database functionality and view collections. It is already well-known
how to translate an existing entity-relationship schema to a so-called logical (or
implementation) schema. ER schemata can be enhanced by directives for this
translation.

Rule-Based OR compilation of HERM schemata and models uses the theory
of extended entity-relationship models. In the case of extended entity-relationship
schemata and of VisualSQL as a query and functionality specification language,
we may use a rule system consisting of 12+1 translation phases for transforma-
tion. The phases for a compilation are the following ones:

0. Configuration of the HERM compiler, preprocessing, prefetching according
to the model directives;

1. Schema and operation lexical analysis;
2. Syntactic analysis for schema and operations;
3. Semantical analysis schema and operations;
4. Generation of intermediate code that is also used as the ground schema for

VisualSQL query, view, maintenance specification;
5. Preparation for schema and operation optimisation (or normalisation);
6. Schema tuning (operational optimisation);
7. Introduction and injection of controlled redundancy;
8. Redefinition and revision of generated types and operations (also UDT);
9. Recompilation for quantity matrix (Mengengerüst) (big and huge DB);
10. Toughening for evolution and change in data dictionary;
11. Derivation of support services and view towers;
12. Generation of data dictionary entries.

We can enhance this translation to more specific compilation and embedding
into the corresponding platforms. Practitioners use in this case pragmas at least
at the intentional level for object-relational technology. The translation includes
also translation of view collections. Furthermore, HERM+ can be extended by
VisualSQL that allows to declare queries at the level of HERM schemata. This
translation results then directly in a performance-oriented structure specification
at the level of physical schemato. We may envision that this approach can also
be extended to other platforms such as XML or big data platforms. The result

Figure 6 specialises the general Figure 5 for database modelling as sophis-
ticated database programming for a sample application (booking and financing
issues in business applications based on the global-as-design specification ap-
proach).
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beginModelClass [identify, define]

endModelClass

useModelDefs [discipline]

useModellingStyle [mould]

supportOriginPackage [situation]

supportModelFoundation [theory]

beginModelContent [data, tracks, events]

enablerModelling [technology, tools]

...................

...................

endModelContent

data structure spec

OR DBMS
global-as-design

booking, financing
HERM theory

ADOxx

HERM normal model
HERM view models

Fig. 6. The model-centric database structure development based on HERM+

MaaP for Workflow Derivation From Storyboards

The second case study is going to discuss solutions if the deep models are not
similar. In this case, we either normalise the source models in such a way that
they can be transformed to the target models or programs or generate the full
variety of potential target models or programs. The last approach is feasible if the
generated models or programs are not changed on their own. All changes to them
must be changes at the level of the source model suite. Web information system
development has already successfully used this approach. Normalisation of source
models is driven by well-formedness rules that are applied to the models.

Storyboarding and BPMN-based workflow specification are based on differ-
ent deep models, i.e. we observe a deep model mismatch. The differences are
similar to those observed for impedance mismatches between parallel database
processing and sequential program computation. Therefore, the model trans-
formation needs also approaches to overcome this mismatch. BPMN is strictly
actor-oriented and based on a strict local-as-design paradigm. Storyboarding is
more flexible. We might use global-as-design or partial local-as-design combined
with global-as-design techniques. Storyboarding provides some freedom on the
flow of activities. BPMN mainly uses a more strict form where diagrams are
given with a static flow of activities. Diagrams are not adapted to the changes
in user behaviour. Dynamic workflow specification is still based on flexibility at
design time and on stability during runtime.
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SiteLang specification allows to define scenes with plots for activities within
a scene by different actors. This interaction among actors must be mapped to
communication interaction between diagrams based on collaboration diagrams,
to choreography diagrams among, or to conversations among actors. Scenes in
a SiteLang specification can be visited by all enabled actors and completed by
some of them. This freedom of task completion is neither achievable for normal
BPMN diagrams nor for dynamic ones. Generic BPMN diagrams can however
be used for adaptation to the actual actor behaviour at runtime.

The transformation of a storyboard can be based on language transformation
rules. Typical rules are the following ones:

– An actor storyline is directly transferred to a BPMN pool.
– An atomic scene without atomic plots is transferred to a BPMN activity.
– A story sequence is represented by a sequence of BPMN activities. A well-

formed story split with its own join (Fitch structure1) is transformed to the
corresponding BPMN gateway structure. Optional scenes can be transformed
to corresponding BPMN gateway structures. Iterations of simple stories can
also be directly transferred to BPMN.

– Complex scenes are transformed to either BPMN diagrams or to complex
activities or to sub-scenes.

– Story entries and completions are transferred to events in BPMN.
– Communication is based on BPMN communication pattern among diagrams,

e.g. a link-scene-link combination among different actors.

The storyboard should also be normalised or transformed in some kind of
well-formed storyboard. Parallel links between scenes are normalised either by
introduction of intermediate scenes or by merging into a complex scene includ-
ing plot transformation or link merging. The decision which next scenes are
going to be chosen is integrated into the plot of the source scene. The naming
of scenes is unified according to a naming scheme. Stories in a storyboard can
be encapsulated into units with a singleton task. The storyboard is separated
into mini-stories that will become workflows. The stories in a storyboard are de-
composed into relatively independent mini-stories with starting and completing
points. A mini-story must be representable by a singleton BPMN diagram if the
actor in the mini-story does not change. Otherwise, we use superflow diagrams
which call subflow diagrams as subprograms.

[74] introduced a small example for a storyboard of a trail system. The nor-
malisation process leads directly to a diagram in Figure 7 that restricts the
freedom and reduces the enabled actors to actors with encapsulatable behaviour
within a mini-story.

There are several techniques and rules for storyboard conversion including
data structure development:

Refinement preprocessing orients on data view mapping for each actor, on
strict actor and role separation, on strict start-end flow, on session separa-
tion, and on additional communication.

1 Each split must has its join in the diagram and each join has only its split what is
a one-to-one association of splits and joins.
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Fig. 7. The storyboard from [74] after refinement and normalization

Restriction of freedom is based on selection of the most essential flows since
he storyboard that allows too much freedom. It downsizes the storyboard by
restricting the flow of activities to the essential ones and by removing the
rest.

Restricted and well-formed parallelism must yield to Fitch structuring.
Normalisation of the storyboard arrives at well-formed BPMN diagrams.
Plot integration for scenes with potential actor and role separation of these

scenes into separate scenes with singleton actors.

We apply graph grammar rules to the stories since storyboarding uses a graphical
language. The storyboard contains also the data viewpoint. This design infor-
mation must be supported within a co-design approach to data structuring and
workflow specification.

A normalised storyboard is now the basis for a BPMN diagram that displays
only the visitors’ viewpoint. The flow of activities is restricted to the most essen-
tial ones. Nothing else is supported. This transformation is information-loosing.
A partial diagram after this transformation is displayed in Figure 8.

5.3 Towards Industrial Development On the Basis of Models

componentisation + standardisation + model suite architecture

6 M2P, MaP, MaaP: Summarising

The M2P, MaP, and MaaP approaches revise, combine, and generalise efforts
and projects for model-driven development. We discussed some of those projects
while knowing that is became already a major trend in software engineering.

We envision three already existing approaches:
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Fig. 8. Translation of the storyboard from [74] to some BPMN process

Finally we ask ourselves why we should target on true fifth generation pro-
gramming. A number of reasons force us to use next generation programming:

– Computer engineering has not yet reached the level of being a science. It has
not got its culture. Education is mainly education for handicraft work.

– Programming is more and more often performed by laymen, outsiders, ca-
sual users, non-specialists, self-made programmers, etc. They need a proper
support.

– Apps and modern facilities are often developed without CS education. The
uncontrolled growth worsens this situation.

– Users have not been the main concern for programmers. Operator and ad-
ministrator thinking is still THE common sense understanding of the area.

– Migration, integration, maintenance, and modernisation are still a real night-
mare. Half-life time of systems and software is far lower than lifespan of
software deployment. New systems use new paradigms without downgrad-
ing features.

– Documentation is often luxury. Documentations are often generated from
code (without inner documentation, without thoughtful architecture, with
“monster” classes, only once and never after modification) because of it is
otherwise not economic, it seems to be side work, it disturbs delivery in time,
and there is no urgent need in better ones. Modernisation and maintenance
becomes then a real vexation.



From M4P to M2P and towards MaP 31

We finally complete this paper with a citation to a Genicore poster presented at
ER’2017: “Modelware is the new software”, i.e. domain-situation models instead
of models of software. [51]
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17. J. Bormann and J. Lötzsch. Definition und Realisierung von Fachsprachen mit
DEPOT. PhD thesis, Technische Universität Dresden, Sektion Mathematik, 1974.

18. M. Brambilla, S. Comai, P. Fraternali, and M. Matera. Designing web applications
with WebML and WebRatio. pages 221–261, 2008.

19. G. Brassard and P. Bratley. Algorithmics - Theory and Practice. Prentice Hall,
London, 1988.

20. J.E. Brenner. The logical process of model-based reasoning. In L. Magnani,
W. Carnielli, and C. Pizzi, editors, Model-based reasoning in science and technol-
ogy, pages 333–358. Springer, Heidelberg, 2010.

21. J. Conallen. Building Web Applications with UML. Addison-Wesley, Boston,
2003.

22. M.T. Cox and A. Raja, editors. Mwetareasoning - Thinking about Thinking. MIT
Press, Cambridge, 2011.

23. A. Dahanayake. An environment to support flexible information modelling. PhD
thesis, Delft University of Technology, 1997.

24. A. Dahanayake and B. Thalheim. Co-evolution of (information) system models.
In EMMSAD 2010, volume 50 of LNBIP, pages 314–326. Springer, 2010.

25. T. Daly. Axiom. the scientific computation system. http://axiom-
developer.org/axiom-website/, 2018.

26. P Deransart, M Jourdan, and B Lorho. Attribute Grammars-Definitions, Systems
and Bibliography. LNCS 323. Springer Verlag, 1988.

27. D. Draheim and G. Weber. Form-Oriented Analysis. Springer, Berlin, 2005.
28. Eclipse project web site. http://www.eclipse.org.
29. M. Edwards. A brief history of holons. Unpublished essay. http://www. integral-

world. net/edwards13. html. Published, 2003.
30. H. Ehrig, C. Ermel, U. Golas, and F. Hermann. Graph and Model Transformation

- General Framework and Applications. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 2015.

31. D. W. Embley, S. W. Liddle, and O. Pastor. Conceptual-model programming: A
manifesto. In The Handbook of Conceptual Modeling: Its Usage and Its Challenges,
chapter 1, pages 1–15. Springer, Berlin, 2010.

32. D. W. Embley and W.Y. Mok. Mapping conceptual models to database schemas.
In The Handbook of Conceptual Modeling: Its Usage and Its Challenges, chapter 5,
pages 123–164. Springer, Berlin, 2010.

33. A. P. Ershov. The transformational machine: Theme and variations. In Proc.
MFCS 1981, volume 118 of Lecture Notes in Computer Science, pages 16–32.
Springer, 1981.

34. E. A. Feigenbaum and P. McCorduck. The fifth generation - artificial intelligence
and Japan’s computer challenge to the world. Addison-Wesley, 1983.

35. P. Fettke and P. Loos, editors. Reference Modeling for Business Systems Analysis.
Hershey, 2007.
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