
Usage Models Mapped to Programs

András J. Molnár1,2[0000−0002−2194−0320] and
Bernhard Thalheim1[0000−0002−7909−7786]

1 Christian-Albrechts-University Kiel, Computer Science Institute,
D-24098 Kiel, Germany

{ajm,thalheim}@is.informatik.uni-kiel.de
2 MTA-SZTAKI Institute for Computer Science and Control,
Hungarian Academy of Sciences, H-1111 Budapest, Hungary

modras@ilab.sztaki.hu

Abstract. Model-based programming can replace classical program-
ming based on compilation and systematic development of models as
well on explicit consideration of all model components without hiding in-
trinsic details and assumptions. A key element of model-based program-
ming is the proper definition and management of model suites, by which
multiple, interrelated models can be transformed from one another and
their consistency is ensured after modifications. A usage model is based
on the specification of user roles and types, together with an interac-
tion space described in a form of a storyboard, showing which activities
are supported, in which order, by which actors. A workflow model is
an extended, well-formed declaration of how specific processes should be
carried out. It can directly be translated to program code, using a proper
workflow or process engine. A novel way of programming is being opened
up by usage modeling, which is being investigated in this paper: given
a storyboard with supported usage scenarios, it is possible to derive a
workflow model from it. We present our two translation methods us-
ing a working example, identifying guidelines as requirements for model
refinement and normalization, rules for model translation, and propose
considerations towards improved methods and model specifications.

Keywords: Model-centered programming · Model to program · Model
suite · Model transformation · Storyboard · Process model.

1 Introduction

1.1 Programming by Modeling

Programming is nowadays a socio-technical practice in most disciplines of sci-
ence and engineering. Software systems are often developed by non-programmers
or non-computer scientists, without background knowledge and skills, or insight
into the culture of computer science, without plans for systematic development.
Maintenance, extension, porting, integration, evolution, migration, and mod-
ernisation become an obstacle and are already causing problems similar to the
software crisis 1.0, since such systems often have a poor structure, architecture,



2 A. J. Molnár, B. Thalheim

documentation, with a lost insight of specific solutions. Programs of the future
must be understandable by all involved parties and must support reasoning and
controlled realisation and evolution at all levels of abstraction.

Our envisioned true fifth generation programming [14] is a new programming
paradigm where models are essentially programs of next generation and models
are translated to code in various third or fourth generation languages. Program-
ming is done by model development, relying on the compilation of these models
into the most appropriate environment.

Application engineers and scientists are going to develop and use models in-
stead of old-style programming, supported by templates from their application
area. They can thus concentrate on how to find a correct solution to their prob-
lems, managing the complexity of software intensive systems. The process will be
supported by model-backed reasoning techniques, as developers will appreciate
and properly evaluate the model suite at the desired level of abstraction.

1.2 Usage Models and Workflow Models

In our study we are considering the case of web information system development.
A usage model of a web-is consists of specification of user roles and types,

their associated goals and tasks, and an interaction space. The latter can be
expressed as a graph, called a storyboard, describing what activities are supported
and in which possible order, by which actors [9]. Supported interaction playouts
can be formulated as scenarios (exact graph paths), story algebra expressions
(path scemata), or more generally, subgraphs of the storyboard, including actor-
specific views. The usage model is developed by a global-as-design approach.

A workflow model is an extended, well-formed declaration of how specific
processes should be carried out, in a notation that is readily understandable
by all stakeholders, including business analysts, technical developers and people
who manage and monitor those processes [7]. A de facto standard is BPMN [7],
but it is possible to use another workflow description language. The workflow
model can directly be translated to software process components, using a proper
workflow or process engine (e.g. [1]). This opens up a novel way of programming
by usage modeling, via intermediate translation to a workflow model.

1.3 Related Work

Our current contribution can be related – amongst others – to the following pre-
vious works. Notions of models are discussed in [12]. [11] introduces model suites
consisting of multiple, explicitly associated models, where the association uses
maintenance modes, similar to integrity support in databases [16]. The models
as programs – true fifth generation programming agenda is proposed in [14]. For
data structuring, translation of entity-relationship models to relational database
schemata is well-known [3, 13]. We are proposing a similar approach for the
dynamics of functionality, motivated by compilers [8]: phases of preprocessing,
parsing and syntax checking is followed by semantic analysis resulting an in-
termediate structure, and finally a possible optimization phase of the resulting,



Usage Models Mapped to Programs 3

translated model. [10] discusses proceses-driven applications and model-driven
execution in terms of BPMN [7] diagrams. [2] elaborates a generative approach
to the functionality of interactive information systems. [15] introduces dynam-
ically combinable mini-stories to handle workflow cases with large flexibility.
Although these latter works consider steps and ideas we can apply here, our
currently addressed problem of usage model translation to workflow model is
not explicitly discussed in any of the publications known to us.

1.4 Goal and Outline of the Paper

Our general vision is to generate running program code based on a usage model
specification. We investigate on a particular sub-case in this paper: given a us-
age model as a storyboard with supported scenarios [9], is there a formalizable
method to derive a workflow model in BPMN [7] from it.

We present our proposed path and general framework for modeling as next
generation programming in Section 2, based on [14]. Section 3 introduces our
target case of workflow model elicitation from a usage model, illustrated by a
working example, with general guidelines for model refinement and enhancement,
rules and two different methods for translation. We conclude and close with
future issues in Section 4.

2 Modeling and Programming

Models are universal instruments for communication and other human activi-
ties. Ideas and thought chunks can be presented to those who share a similar
culture and understanding without the pressure to be scientifically grounded.
A model is an adequate (i.e. analogous, focused, purposeful) and dependable
(i.e. justified, sufficient in quality) instrument that represents origins and per-
forms functions in some deployment scenario [12]. As an instrument, the model
has its own background (i.e. grounding, basis) and should be well-formed. Mod-
els are more abstract than programs, but can be as precise and appropriate
as programs. They support understanding, construction of system components,
communication, reflection, analysis, quality management, exploration, explana-
tion, etc. Models can be translated to programs to a certain extent, therefore,
models can be used as higher-level, abstract, and effective programs. They are,
however, independent of programming languages and environments. Models en-
capsulate, represent and formulate ideas both as of something comprehended
and as a plan. Models declare what exactly to build and can be understandable
by all stakeholders involved in software system development. They become gen-
eral and accurate enough, and can be calibrated to the degree of precision that
is necessary for high quality [14].

2.1 Model Suites

A model suite [11] consists of a coherent collection of explicitly associated mod-
els. A model in the model suite is used for different purposes such as commu-



4 A. J. Molnár, B. Thalheim

nication, documentation, conceptualisation, construction, analysis, design, ex-
planation, and modernisation. The model suite can be used as a program of
next generation and will be mapped to programs in host languages of fourth or
third generation. Models delivered include informative and representation mod-
els as well as the compilation of the model suite to programs in host languages.
Consistency can be ensured similarly to relational databases [16]. Models will
thus become executable while being as precise and accurate as appropriate for
the given problem case, explainable and understandable to developers and users
within their tasks and focus, changeable and adaptable at different layers, vali-
datable and verifiable, and maintainable.

2.2 The Layered Model Development Network

The approach of layering has already often and successfully been used. Most
program language realisations and application development methodologies follow
this approach. We assume a general layered approach as the universal basis
for treatment of models as programs [14], at least for programming by non-
specialists. The approach of professional programmers is, however different, can
also be supported in this manner as the success of programming environments
has already been demonstrating, primarily due to their ease of use. Layering
has also been the guiding paradigm behind the TeX and LaTeX text processing
realisations [5, 6] with a general setup layer, the content layer, the adaptable
device-independent layer, and the delivery layer [14].

aa
aa

aa
L
L
L
L
L
L
�
�
�
�
�
�
!!
!!
!!

!!
!!
!!
�
�
�
�
�
�
L
L
L
L
L
L

aa
aa

aa

intrinsic setup

extrinsic reflection

customise &
operationalise

Delivery of the model
within its functions

Data,tracks,
events

Situation

Context,
discipline

Application space, society
and CoP governing the initialisation

Technology
tools

Theory,
science

Methodology,
mould

Identify interest,
select scenario,

define model function

Environment,
stereotypes,
infrastructure
methods set-up,
background

Configuration,
embedding

pre-conceptu-
alisation

Settlement,
adaptation,

inverse modelling,
conceptualisation

Assessment, evaluation,
refinement, revision,

utilisation

Problem space,
focus, scope,

mentalistic and
codified concepts

Consideration of
background and
concept world,

towards deep model

Origin world,
towards ground
generic model
with parameters

Our origins,
concept(ion)s,

towards
normal models

Towards running and
effective models

with informative models and
various representations

Fig. 1. The layered approach to model suite development and program generation

Model suite development and deployment will be based on separation of
concern into extrinsic and intrinsic parts of models. Models typically consist on



Usage Models Mapped to Programs 5

the one side of a normal model that displays all obviously relevant and important
aspects of a model and on the other side of a deep model that intrinsically
reflects commonly accepted intentions, the accepted understanding, the context,
the background that is commonly accepted, and restrictions for the model. The
model suite will be layered into models for initialisation, for strategic setup, for
tactic definition, for operational adaptation, and for model delivery (see Fig. 1).

The initialisation layer is given by the application and the scenarios in which
models are used, by the problem characterisation, by background elements of
the CoP and especially commonly accepted concepts in this community, and
additionally by interest, intensions, and the value. The enabling strategic setup
layer defines the opportunity space and especially the hidden background for the
model. Its main result is the deep model that is typically assumed to be given.
Normal models are not entirely developed from scratch. The tactic definition
layer starts with some generalisation, i.e. select a ground generic model that will
be customised and adapted to the normal model. The operational customisation
layer fits, calibrates and prunes the model suite to the problem space. Finally,
the model is delivered in various variants depending on the interest and the
viewpoints of the CoP members. The complete model suite thus becomes the
source for the code of the problem solution, and for the system to be built [14].

3 Elicitation of Workflow Models from Usage Models

Taking the layered approach of Fig. 1 as the general frame, we can formulate our
proposed agenda in the following way: It is being declared on the initialisation
layer that a website is needed for a specific application. It is analogous to select-
ing a documentclass in LATEX, and determines the possible syntax and semantics
at the underlying layers. The intrinsic, strategic setup guides the ground direc-
tion of future modeling. In our case, it will correspond to what a website means,
what are the side conditions and underlying infrastructure of it and the selected
application domain. It leaves open the particular modeling language or method,
but gives an opportunity space and can impose requirements or proposals for the
way of system development (e.g. an usage model should be developed somehow).
A generic model on the tactic definition (extrinsic) layer can be, for example,
a generalization of a previous storyboard development, or a configurable story-
board composed of best-practice patterns. Decision of the modeling framework
or language (here, the use of storyboarding, with or without story algebra usage,
in which format) must have been taken. Generic modeling must be supported
by meta-models assumed to be available as (re)usable packages. Further model
contents are interpreted based on the selection of these packages. The actual
design is made on the operationalisation layer, forming a normal model (here:
the generic storyboard is customized as needed or allowed by the generic model:
missing parameters are set up, defaults can be overridden). Requirements for an
acceptable normal model must have been given in the generic model or the meta-
model, in order to ensure well-formedness and consistency, and to allow proper
model transformations possible on the delivery layer. The normal model(s) must



6 A. J. Molnár, B. Thalheim

be validated according to these requirements. The target, runnable model is
then delivered from the normal model using a model translation, extraction or
enhancement method. The target model language (here, BPMN) must be given
with the selection and customization of the available translation methods. In-
terrelations and consistency management between the normal and the delivered
model can be further declared.

3.1 An Application Case and Its Usage Model

We are assuming the development an information system for a touristic and
recreational trail network, providing guidance for visitors, as well as facility man-
agement of the trails and related field assets. A map interface is being provided
with planning and navigation features along the designated trails, connected to
an issue tracking system for reporting and managing trail and asset defects.

The high-level usage model is given as a storyboard on Fig. 2. Abstract
usage locations represented by graph nodes are called scenes. Users can navigate
between these scenes, by performing actions associated to directed transition
links. Some indicative action names are given for the reflexive links (which are
in fact, denote multiple links, one by named action). The entry point is marked
with a filled black circle. An end point may also be added as a double circle (by
default, each scene is assumed to be a potential end point).

Fig. 2. High-level storyboard graph for a sample trail management system

We declare three actor roles: visitor, trail manager and trail crew. A set of
authorized actors are pointed to the bottom of restricted scecnes by vertical
arrows [4]. By default, all actors are allowed to enter a scene.

The storyboard is about to represent supported normal scenarios, as specific
means the users can accomplish given tasks. Context-loosing random navigations



Usage Models Mapped to Programs 7

(e.g. back to the main page at any time) can be treated as breaking or canceling
the started scenario, and starting a new scenario with a new context. These
moves are not explicitly modeled so the focus can be kept on meaningful issues.

We are limiting our current discourse for one-session, one-actor scenarios.
The storyboard can be enhanced with input-output content specifications for

each scene. We use the notation of [4] so that input and output content for a
scene is displayed using a short horizontal arrow on the left and the right side,
respectively. Input-output content is named and an output content is assumed
to be delivered as an input content to the next scene along each transition link,
where the content names are equal. Square brackets denote optional input or
output. Content names can be prefixed by generic database operation names.

3.2 Refinement and Normalization of the Storyboard

The top-level storyboard (Fig. 2) has to be refined and enhanced, so that actual
scenarios as paths in the graph will be self-descriptive and consistent, and the
graph is formally sound and contains enough details for a working and mean-
ingful translation into workflow model(s). We state the following semantical
considerations and guidelines for developing the refined usage model. If all these
criteria are met, and guidelines have considered, we call the storyboard normal-
ized. This is only partially verifiable formally – for the items marked with (*) –
and refers to a quality and stage of model development:

– Complex scenes must be decomposed into atomic sub-scenes, each having
a single, well-defined action, task or activity which is fully authorized by a
given set of actor roles. The interaction paths must be modeled by directed
links between the sub-scenes and directly connected to outside (sub)scenes.

– Each transition link with active actor participation (action) must be replaced
by a link-scene-link combination, where the action or activity is performed
at the scene and the new links are only for navigation. This new scene can
be handled and parametrized together with other scenes in a unified way.

– No parallel links between two scenes are allowed (*). They must either be
translated using separate scenes (see above), or merged into one link, or their
source or target scenes must be decomposed to separate sub-scenes.

– The routing decision (which link to follow after a scene) is assumed to be
taken as part of the activity inside a scene, by default. If it is not intended,
then only one outgoing link is allowed and an extra routing decision scene
must be explicitly introduced after the original scene as necessary (this may
be later optimized out).

– Unique names are assumed for all scenes and links (except that two or more
links pointing to the same target scene can have the same name) (*).

– There must be a unique start node (entry point) with a single link to an
initial scene and either a unique end node or a default rule declaring which
scenes can be places for story completion (*).

– Each scene must be enhanced with a set of authorized actor roles. Without
that, a default rule must be supplied. There must be no (normal) links
between scenes without at least one common authorized actor role. (*)



8 A. J. Molnár, B. Thalheim

– Input and output content is to be specified by symbolic names for each scene
wherever applicable. Content names will be matched along the links (*): For
each input content of a scene s there must be an output content with the
same name provided by the source scene of each link directed to s. Optional
content is written in square brackets.

– Input and output content names can be prefixed by database operations:
SELECT is allowed for input, while INSERT, UPDATE, and DELETE are
allowed for output content. Without detailed semantics of these operations,
a single central application database is assumed by default.

3.3 View Generation by Actor Roles

Given a selected actor role, a specific storyboard view can be generated for it as
a basis of role-specific workflow models. Unauthorized scenes for a selected role
are removed with their links, resulting a cut-out of the storyboard, reachable
by actors of the chosen role. An enhanced, normalized version of the visitors’
storyboard view is shown on Fig. 3, with multiple sub-scenes. Links are denoted
by italic numbers. An explicit end node is placed additionally, reachable from
chosen scenes.

Fig. 3. Visitors’ view of the refined and normalized storyboard

3.4 Graph-Based, Direct Translation Method

At this point, a default translation algorithm we have developed, can be applied
to generate a BPMN process flow diagram, based on the graph connectivity of
the storyboard. Details of the algorithm are omitted due to space limitations,
but the result of the translation of Fig.3 is shown on Fig. 4 as a demonstrative
example. The translation process can continue with enhancements indicated in
Section 3.8.



Usage Models Mapped to Programs 9

Fig. 4. Direct translation of visitor usage to BPMN, based on the storyboard graph.
The full connectivity of the usage model is represented as possible process flow paths.
Scenes become tasks. Numbers denote choices based on scene transition edges. Brack-
eted numbers are only for information, referring to original transition edges without
alternatives. The grey-colored gates can be removed by merging their connections.
Further refinements and optimizations are possible.

3.5 Modeling Supported Scenarios by Story Algebra Expressions

Alternatively to the previous method, a more sophisticated and targeted method
is developed, if specific scenarios, which are intended to be supported by the
system, are collected and expressed as patterns in a story algebra.

A particular playout of system usage becomes a path in the storyboard and
is called a scenario. A set of possible scenarios can be modeled as using the
story algebra SiteLang [9, p. 76], similar to regular expressions. Such a scenario
schema can be a pattern for generating a workflow model. The original notation
uses link names for description. We found that using scene names in the story
algebra more naturally supports the translation to workflow models.

For example, a scenario schema of a visitor can be modeled out of the follow-
ing variations: a visitor looks at the map, selects a destination point. The scenario
may continue by reporting an issue for the selected point, or by planning a trip,
navigating along it, and maybe at certain points, reporting an issue on-site. Each
of these variants correspond to different scenarios the system should support and
can be summarized as one or more scenario schemata.

Using abbreviated scene names (by first letters of words, e.g. mb stands
for map browse), the above mentioned visitor scenarios can be modeled by the
following story algebra expression (semicolon is used for denoting sequential
steps, plus sign for at-least-once iteration, square brackets for optionality and
box for expressing alternatives):

mb; ps; (ir2(tp; (tsn; [ir])+)) (1)

Given a storyboard (view) specification, a scenario schema must be compat-
ible with the given scene transitions, which means the following: Atoms of the



10 A. J. Molnár, B. Thalheim

story algebra expression must match to authorized scenes of the storyboard. The
defined scenarios must correspond to valid directed paths within the storyboard
(view). The defined scenarios must start with the marked initial scene and finish
at the defined (or default) end scene(s).

Expression (1) is compatible with the visitors’ storyboard view (Fig. 3). Con-
sistency of the input-output content declarations can also be checked along the
possible playouts. Note the link 6 will not be available if the visitor is coming
from link 7 (there is no navigated route to go back to).

3.6 Decomposition Into Mini-Stories

A scenario or story schema might contain semantically meaningful, reusable
patterns of scene transition playouts, which can be combined with each other
flexibly. Story algebra expressions, however, may be too complex and hard to
handle by human modelers, and such semantical information remains hidden. A
possible solution is to take the union of the relevant scenarios and decompose
them into mini stories [15] (or, at least, extract some mini-stories from it).

A mini-story is a semantically meaningful, self-contained unit, which can be
used flexibly in different scenarios, sometimes by possibly different actors.It can
be modeled explicitly and translated as a reusable subprocess in the workflow
model. Syntactic hints or heuristics can reveal possible mini-story candidates,
but at the end the modeler has to explicitly define or verify them.

In our case, given the story algebra expression (1), candidate mini-stories
can be recognized by maximal, non-atomic subexpressions with none of its non-
trivial parts appearing elsewhere. Based on modeler decision taking into account
semantics as well, we define the following two mini-stories, and substitute them
in the story algebra expression (in a real case, with more scenarios, their reusabil-
ity could be better verified): 1. Select location from map: Slfm ::= mb; ps and
2. Navigate along trip (with reporting issues): Nat ::= (tsn; [ir])+. We keep re-
ferring to scenes ir and tp as atomic mini-stories. The resulting story algebra
expression with the above mini-story substitutions of (1) becomes:

Slfm; (ir2(tp;Nat)) (2)

3.7 The Story-Based Translation Method

After the storyboard (viewed by an actor role, refined and normalized) and the
desired story schemata (story algebra expresions) are given as above, with the
mini-stories modeled, the workflow model in BPMN for each story schema can
be elicitated the following, inductive way:

– Translate atomic mini-stories,
– Translate compound mini-stories based on their story algebra expressions

(which are not translated yet),
– Compose the complex workflow based on the full story algebra expression.



Usage Models Mapped to Programs 11

Translation can be hierarchically carried over using structural recursion along
the story algebra atoms and connectives, as displayed on Fig. 5. A choice for
rule alternatives is proposed to be determined using pragma-like declarations
given for the usage model, or stereotypes associated to story algebra elements
or subexpressions. For example, compund mini-stories can be translated as sub-
processes, or connected using the link event notation.

Fig. 5. Translation rules for story algebra expressions and additional assets based on
storyboard. Dotted-lined rectangles denote arbitrary workflow model parts already
translated from story subexpressions.

3.8 Enhancement of the Translated Model

Transition link names (here, numbers) can be added to the workflow model, as
well as input-output content as data objects and database connections associated
to the workflow tasks and subprocesses (see the additional rules of Fig. 5).

Fig. 6 displays a result of the refined, normalized visitors’ storyboard view
(Fig. 3) being translated to BPMN, based on story algebra expression (2) and
mini-stories of Section 3.6, using rules of Fig. 5.

Model translation may be guided by additional information in forms of scene
or link stereotypes.BPMN provides a variety of assets and some of them could
be directly elicitated.Stereotypes offer more semantic information such as data
or user-driven navigation, cancellation or rollback of started transactions, etc.,
to be mapped to native BPMN constructs.



12 A. J. Molnár, B. Thalheim

Fig. 6. BPMN workflow translation of visitors’ view usage model, based on story al-
gebra expression (2)

The modeling process is based on laying out default values for model formats,
start/end scenes, authorized actor roles, context objects containing scenario his-
tory, handling of exceptions and invalid routing, stereotypes and other semantical
or transformative guidance (e.g. how to connect mini-stories together, how to
translate iteracted sub-processes). Defaults should work for conventional model-
ing cases. For customized, more sophisticated modeling, defaults can be overwrit-
ten. A possible post-translation optimization phase can improve the workflow
model in each case. Most of these issues are left for future investigation.

4 Conclusion and Future Work

Model-based programming can be the true fifth generation programming, sup-
ported by sound foundation and appropriate tools, based on model suites of
explicitly interrelated models. Models have their specific functions, viewpoints
and can be given in various levels of details. Ensuring coherence, consistence and
translatability among them is a crucial issue. In this paper, we have presented
a general, layered modeling framework as a basis, and showed its feasibility by
giving methods and guidelines for model development and translation between
two specific types of models: the usage model (expressed by storyboard graphs
and story algebra expressions) and the workflow model (expressed by BPMN).

The workflow model is claimed to be directly translatable to program code
[10, 1]. We have introduced the concept of user view and the normalization of



Usage Models Mapped to Programs 13

the storyboard, providing guidelines to the modeler to refine an initial, top-level
usage model. We gave two methods for translating the refined usage model to
workflow models, and successfully applied the mini-story concept for semanti-
cally structured and flexible workflow elicitation.

The method is ready to be tested with more complex examples. Prototype
implementations seem also possible. It opens up a variety of future issues, such as
actor collaboration modeling, or defining stereotypes and pragmas determining
model semantics and translations. The task of the metamodeler is to imple-
ment packages of generic models, and add-ons, which can enrich a generic model
with pre-defined patterns and templates, and the actual application modeler can
choose among them or let the modeling system decide on which defaults it uses
for which cases. It points towards a generic model-suite framework, which is, in
our view, essential for truly working general model-based programming.

References

1. The Camunda BPM manual. https://docs.camunda.org/manual/7.10/
2. Bienemann, A.: A generative approach to functionality of interactive information

systems. Ph.D. thesis, CAU Kiel, Dept. of Computer Science (2008)
3. Chen, P.: Entity-relationship modeling: Historical events, future trends, and lessons

learned. In: Software pioneers. pp. 296–310. Springer (2002)
4. Düsterhöft, A., Thalheim, B.: Information Modeling for Internet applications, chap.

Systematic development of internet sites: Extending approaches of conceptual mod-
eling, pp. 80–101. Idea Group Publishing (2003)

5. Knuth, D.E.: The METAFONTbook. Addison-Wesley (1986)
6. Lamport, L.: LaTeX: A document preparation system. Addison-Wesley (1994)
7. OMG: Business process model and notation (BPMN ) version 2.0 (2010)
8. Pittman, T., Peters, J.: The Art of Compiler Design: Theory and Practice. Prentice

Hall, Upper Saddle River (1992)
9. Schewe, K., Thalheim, B.: Design and Development of Web Information Systems.

Springer (2019)
10. Stiehl, V.: Process-Driven Applications with BPMN. Springer (2014)
11. Thalheim, B.: Model suites for multi-layered database modelling. In: Information

Modelling and Knowledge Bases XXI, volume 206 of Frontiers in Artificial Intelli-
gence and Applications. pp. 116–134. IOS Press (2010)

12. Thalheim, B.: Normal models and their modelling matrix. In: Models: Concepts,
Theory, Logic, Reasoning, and Semantics, Tributes. pp. 44–72. College Publications
(2018)

13. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer (2000)

14. Thalheim, B., Jaakkola, H.: Models as programs: The envisioned and principal
key to true fifth generation programming. In: 29th International Conference on
Information Modelling and Knowledge Bases. IOS Press (2019)

15. Tropmann, M., Thalheim, B.: Mini story composition for generic workflows in sup-
port of disaster management. In: DEXA 2013. pp. 36–40. IEEE Computer Society
(2013)

16. Türker, C., Gertz, M.: Semantic integrity support in SQL:1999 and commercial
(object-)relational database management systems. The VLDB Journal 10(4), 241–
269 (2001)


